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Exact propagator for reflectionless potentials 

R E Crandall 
Department of Physics, Reed College, Portland, O R  97202, USA 

Received 28 February 1983, in final form 20 April 1983 

Abstract. The exact space-time propagator for a general reflectionless potential is obtained 
in closed form involving error functions. It is indicated how bound states and transmission 
coefficients may be recovered from asymptotic behaviour of the propagator. A sum rule 
is derived that shows how the leading terms of the short-time form of the propagator can 
be used rigorously in a Feynman path integral formalism. 

1. Introduction 

Reflectionless potentials have been used successfully in  various branches of physics, 
especially in connection with problems of inverse scattering and the theory of solitons 
(Lamb 1980, Bargmann 1949, Scott et a1 1973, Gardner et a1 1974, Moses and 
Tuan 1959). Recent work has revealed these potentials to be useful in what might 
be called phenomenological settings, due to certain uniqueness properties forced by 
an assumption of no reflection. For example, there exists exactly one symmetric, 
reflectionless potential having a given finite set of bound state energies (Schonfeld et 
af 1980). What is more, algorithms have been written down for computation of such 
unique potentials in terms of the energy set. These results have been used to construct 
reflectionless approximations to confining potentials (Quigg and Rosner 198 1). 

In the present treatment, known properties of reflectionless V(x) and their associa- 
ted eigenfunctions are used to derive the exact space-time propagator K (x, t 1 xo, 0) 
for the problem. This will be the solution to the time-dependent Schrodinger equation 
( h  = 2m = 1): 

iaK/at = -a2K/ax2 + V(X)K (1.1) 
having 

lim K = S(x -xo).  
1-0 

Exact propagators have been worked out for the (non-reflectionless) potentials V(x) = 
ax2 + bx + c  (Feynman and Hibbs 19651, V(x) = ax2 + b/x2 (Khandekhar and 
Lawande 1975) and for certain time-dependent V(x, t )  (Camiz et af 1971). In these 
known cases connection has been achieved with the Feynman path integral formalism, 
which describes a procedure for propagator construction. 

The exact propagator for arbitrary reflectionless V(x) will be computed by the 
method of summation over eigenstates. This method can be used for the known cases 
above, as well as for the three-dimensional Coulomb problem (in the latter case the 
result is a momentum-space Green function) (Blinder 1981, Hostler 1964). It is 
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shown that the Feynman path integral, involving classical action phase terms, gives 
the exact reflectionless propagator on the basis of a theorem of Truman (1977). 

It will be possible to extract information from the propagator via asymptotic 
evaluation in various regions of the complex time plane. The bound states and the 
transmission coefficient for scattering can be easily recovered in this fashion. Of 
special interest is the short-time (classical) limit central to the Feynman formalism. 
Classical correspondence is achieved through use of a powerful sum rule. Assume 
that V ( x )  is reflectionless, with V(=ttoo) = 0. Let the N bound states 4, have respective 
energies -k, . Then the identity 2 

h' 

V ( U )  du =-4  4 n ( x ) $ n ( x o )  sinh(kn(x -xo))  ( 1 . 3 )  I: n = l  

holds for all real xo, x. This relation, which we prove in 9: 2, is typical of the strong 
restrictions to which reflectionless potentials are subject. 

2. Eigenstate structure 

A potential V(x) with V(*too)=O is reflectionless if every solution ( L p ( x )  to the 
one-dimensional Schrodinger equation (real p ) :  

(2.1) -*" + v* = p2* 

having ingoing structure 

& ( x )  - exp(ipx1 
x - -00 

has also the outgoing structure 

The transmission coefficient T ( p )  will satisfy 7T* = 1, indicating no reflection. For 
potentials V having other limits than zero at x = fa, all results are easily modified. 
It is known (Schonfeld et a1 1980) that V is uniquely specified by the bound energies 
E, together with constants c, written in terms of the bound states 4, as 

E, = -kf,  j = 1 , 2  , . . . ,  N ,  c, = lim $,(x) exp(k,x). (2.4) 

As noted in 9: 1, the additional requirement that V be an even function allows the 
energy spectrum alone to specify V exhaustively, in which case the c, are themselves 
determined by the k,. 

A complete set of scattering states can be given in terms of the bound states by 
(Moses and Tuan 1959) 

1-00 

Furthermore, a linear relation holds between the bound states, in the form (Gardner 
et a1 1974) 
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There are many restricting relations for the potential V(x), among which is the 
identity (Gardner et a1 1974) 

This can be used together with (2.6) to prove the sum rule (1.3). Note that 

N 

iJxl V ( U )  du = 1 cm(4m(x) exp(-kmx)-llm(xo) exp(-kmxo)). (2.8) 

By expressing $,,,(xo) as a sum (2.6) and symmetrising summands m, n the sum rule 
is immediately obtained. 

A simple example of the above relations is provided by the reflectionless potential 

V ( x )  = -2 sech’x (2.9) 

m = l  

for which the single bound state of energy -1 is 

$l(x) = 2-”’ sech x, (2.10) 

while the continuum states satisfying (2.1), (2.2) are 

& ( x )  = [(ip - tanhx)/(ip + l)] exp(ipx). (2.1 1) 

All of the relations described hold trivially, with the sum rule amounting to the identity 
(tanh x - tanh xo) = sech x sech xo sinh(x -xo) .  Many other interrelations for V, 4i, 4, 
are derived in the references, but the above will suffice for computation and evaluation 
of the space-time propagator. 

3. Propagator construction 

The propagator satisfying ( l . l ) ,  (1.2) is expressible as a sum over eigenstates: 
hi 

The continuum momentum normalisation factor (1/2lr) is determined from the 
observation that the free (V identically zero) propagator is 

so that (2.5) and (1.2) demand the equivalent normalisation guaranteeing delta- 
function behaviour for large positive xo, x. Insertion of the continuum states (2.5) 
into the integral results in a complicated expression which can be greatly simplified 
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by the observation that integrals of the form 

J ( x ,  t )  = I f(p) exp[i(px --p2t)l dp (3.3) 

can be thought of as freely propagated waves with initial data J ( x ,  0). Define the 
functional F, to act on initial data J ( x ,  0) according to 

m 

Jb, t )  = Ff{J(x ,  0 ) )  = I K o b ,  t 1 y, O)J(y, 0) dy. (3.4) 
-m 

Now denote the first bound-state sum in (3.1) by Kb, and insert the full wavefunctions 
(2.5) into the integral of (3.1) to get 

K ( X ,  flXo, O)=Kb+Ko+C C m 4 m ( X )  exp(-kmx)F,{-8(xo-x) exp(-kmlx-xoj)} 
m 

+C cn4‘ , (x0)  exp(-knxo)Fft-8(x -xo) exp(-knlx -xol)} 

+ C cmcn4n (xOMm(x 1 exp(-knxo - k m x  )Ft{Imn ( x  -xo)I 

n 

(3.5) 
m.n 

where the function I,, is defined by 

Imn(s) = ( k m  + k n ) - 1 ( 8 ( s )  exp(-k,s)+@(-s) exp(-kmlsl)). (3.6) 

The functional F, is patently linear, so we can write 

The final two terms conveniently simplify due to the identity (2.6). Furthermore, the 
functional can now be evaluated from (3.4) and (3.2) as 

(3.9) 

R (s )  = (it)”2(km f is/2t) (3.10) 

F,{O(-s )  exp(kms)}= 1 exp(k,s + i k i t ) ( l  -erf(R,(s))) 
where 

and erf is the standard error function: 

(3.1 1) 
477 Jo 

It is interesting that the simplification arising from (2.6) actually cancels the leading 
bound state terms of (3.1). Performing this cancellation we get the exact reflectionless 
propagator, from (3.7), as: 

N 

~ ( x ,  tlxo, 0) = ~ o ( x ,  r lxo, 0 ) + 1  C 4n(x)4n(xo) exp(ik3) 
n = l  

*{erf[(it)1’2(kn + i(x -xo)/2r)] +erf[(it)*’2(k, - i(x - xo)/2t)]}. (3.12) 
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The expression has finitely many terms, and the bound state component of the 
propagator is now ‘hidden’ in the error-function part. Note that if there are no bound 
states the sum is interpreted as empty, in which case the free propagator results (the 
unique reflectionless potential with no bound states and V(*cO)=O is the zero 
potential). A special case is discussed in detail in Crandall and Litt (1983). 

Some asymptotic regions of interest for evaluation of K are the short-time limit: 

t + O’, xo, x fixed (3.13) 

and the scattering limit: 

- x o ,  x, t + 03, q = ( x  - x o ) / 2 t  fixed. (3.14) 

The denominator ‘2’ in this last expression allows q to be a measure of momentum, 
since m = in present units. In these, or in any other asymptotic regions, it is important 
that the location of the argument to erf be properly interpreted. Consider the 
expression 

erf[(ir)’”(k + is/2t)] (3.15) 

in the short-time limit. It would appear that for positive s, k the argument lies in the 
octant 7r/2 < 8 < 37r/4, but this gives incorrect results. For consistent evaluation, one 
may attribute to the time variable a negative imaginary part, that is t replaced by 
t (1  - k ) ,  in which case the short-time limit of (3.15) has argument lying in the octant 
3 r / 4  < 8 < 7r. The argument for s negative will lie in the octant -7r/4 < 8 < 0. This 
method of evaluation is equivalent to modifying h,  as some investigators have indicated 
for even the free particle propagator (Feynman and Hibbs 1965). 

Behaviour in regions (3.13) and (3.14) can now be analysed using known asympto- 
tics for the error function (Abramowitz and Stegun 1970). Keeping in mind the 
definition (3.10) we obtain, in the short-time limit, 

erf(R: (x -xo)) + erf(R i (x -xo)) 

(3.16) 

where O(r) indicates an error term that is absolutely bounded by At for a constant 
A,  any xo, x. For the scattering limit the result is 

erf(R:(x -x,))+erf(R,(x -xo))  

(3.17) 
A third asymptotic region is especially easy to analyse. Take 

t + -im (3.18) 

which can be used to recover bound state information. The sum of the two error 
functions in (3.12) is asymptotic to +2. For this region, the propagator behaves 
according to 

K(x,  -iz I x o , ~ )  - C ~lm(x)~ , (xO)  exp(k:z), (3.19) 
1-13 , 

having ground state leading term. 
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4. Recovery of transmission coefficient 

In the scattering region of space-time indicated by (3.14) the sum-over-eigenstates 
(3.1) will go into 

K -1 T ( p )  exp[ip(x -xO)]exp(ip2t) dp. (4.1) 

Stationary-phase evaluation of this integral gives the formal relation between trans- 
mission coefficient T ( p )  and the propagator: 

We presently show this to be correct for the calculated reflectionless propagator on 
the basis of (3.17). We have 

From the eigenstate behaviour implied by (2.4) we have 
2 

K -KO( 1 - 1  +) 
n n - 1 4  

(4.3) 

(4.4) 

The factor in parentheses has the required pole structure of the transmission coefficient 
T ( q ) ,  and is in fact precisely this coefficient on the basis of relations for the cn given 
in Lamb (1980) and Schonfeld et a1 (1980). 

5. Validity of the Feynman path integral 

In this section it will be shown that the leading terms of the short-time form of K 
can be used rigorously in a path integral formulation. Consider the straight-line path 
connecting space-time endpoints (xO, 0) and (x, t ) :  

(5.2) 

where T, V are kinetic and potential energies respectively. It is known that a particular 
definition of the Feynman path integral is valid for this straight-line action, provided 
the potential V(x) is sufficiently well behaved. Specifically, define for integers M the 
parameters xM = x and T = t /M,  and define the Mth-order path integral to be the 
( M  - 1)-fold integral 

Then if V is the Fourier transform of a measure of bounded absolute variation, 

K = lim KM (5.4) M 
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exists and is the exact propagator satisfying ( l . l ) ,  (1.2) (Truman 1977). From the 
sum rule (1.3) we can write, by inspecting the limit xo + x, 

N 

V(x)=-4  c kfl$2,(x). 
fl=l 

( 5 . 5 )  

This means that the Fourier transform of V is a finite sum of Fourier transforms of 
exponentially decaying functions (by (2.4)). Therefore the transform of V is itself 
of bounded variation, and this establishes the validity of the limit (5.4) for any 
reflectionless potential. Now we shall turn to the problem of evaluating the propagator 
(3 .12)  in the short-time limit. 

Insertion of the asymptotic form (3.16) into the exact propagator expression (3.16) 
gives 

(5.6) 

The importance of the sum rule (1.3) in the classical limit is now evident. The 
short-time limit can be immediately written as 

K ( x ,  t 1x0, 0 )  t ~ +  KO* 1 -it(x -x0)-' V(u)  du +O(t2)). ( (5.7) 

It is interesting that the sum rule has suggested in a natural way that we use the 
straight-line classical action. Indeed, the potential term in (5 .7)  is just the straight-line 
form, and we write: 

~ ( x ,  t (xo,  0 )  ,--+ (47rii)-1'2 exp[iS+0(t2)]. (5.8) 

This is the intended result, that the short-time form (5.8) is, in leading terms, sufficiently 
accurate to allow a rigorously defined path integral (5.3).  
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